Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions.

نویسندگان

  • Mingqiu Wang
  • Shreyas R Ravindranath
  • Maha K Rahim
  • Elliot L Botvinick
  • Jered B Haun
چکیده

The targeted delivery of nanoparticle carriers holds tremendous potential to transform the detection and treatment of diseases. A major attribute of nanoparticles is the ability to form multiple bonds with target cells, which greatly improves the adhesion strength. However, the multivalent binding of nanoparticles is still poorly understood, particularly from a dynamic perspective. In previous experimental work, we studied the kinetics of nanoparticle adhesion and found that the rate of detachment decreased over time. Here, we have applied the adhesive dynamics simulation framework to investigate binding dynamics between an antibody-conjugated, 200-nm-diameter sphere and an ICAM-1-coated surface on the scale of individual bonds. We found that nano adhesive dynamics (NAD) simulations could replicate the time-varying nanoparticle detachment behavior that we observed in experiments. As expected, this behavior correlated with a steady increase in mean bond number with time, but this was attributed to bond accumulation only during the first second that nanoparticles were bound. Longer-term increases in bond number instead were manifested from nanoparticle detachment serving as a selection mechanism to eliminate nanoparticles that had randomly been confined to lower bond valencies. Thus, time-dependent nanoparticle detachment reflects an evolution of the remaining nanoparticle population toward higher overall bond valency. We also found that NAD simulations precisely matched experiments whenever mechanical force loads on bonds were high enough to directly induce rupture. These mechanical forces were in excess of 300 pN and primarily arose from the Brownian motion of the nanoparticle, but we also identified a valency-dependent contribution from bonds pulling on each other. In summary, we have achieved excellent kinetic consistency between NAD simulations and experiments, which has revealed new insights into the dynamics and biophysics of multivalent nanoparticle adhesion. In future work, we will leverage the simulation as a design tool for optimizing targeted nanoparticle agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing multivalency in ligand–receptor-mediated adhesion of soft, biomimetic interfaces

Many biological functions at cell level are mediated by the glycocalyx, a dense carbohydrate-presenting layer. In this layer specific interactions between carbohydrate ligands and protein receptors are formed to control cell-cell recognition, cell adhesion and related processes. The aim of this work is to shed light on the principles of complex formation between surface anchored carbohydrates a...

متن کامل

Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency.

The interactions between nanosized particles and living systems are commonly mediated by what adsorbs to the nanoparticle in the biological environment, its biomolecular corona, rather than the pristine surface. Here, we characterize the adhesion toward the cell membrane of nanoparticles of different material and size and study how this is modulated by the presence or absence of a corona on the...

متن کامل

Formation and size tuning of colloidal microcapsules via host-guest molecular recognition at the liquid-liquid interface.

Stimuli-responsive colloidal microcapsules have been fabricated at the oil-water interface using molecular recognition between functionalized gold nanoparticles. Water-soluble beta-cyclodextrin-capped gold nanoparticles and organo-soluble adamantyl-functionalized gold nanoparticles are self-assembled at the water-toluene interface via specific host-guest molecular interactions to provide robust...

متن کامل

3-Sulfogalactosyl-dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity

Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin-receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (MAM) from the gut commensal Escherichia coli HS (MAMHS), which contains an array of seven mammalia...

متن کامل

Supramolecular Layer-by-Layer Assembly of 3D Multicomponent Nanostructures via Multivalent Molecular Recognition

The supramolecular layer-by-layer assembly of 3D multicomponent nanostructures of nanoparticles is demonstrated. Nanoimprint lithography (NIL) was used as the patterning tool for making patterned beta-cyclodextrin (CD) self-assembled monolayers (SAMs) and for the confinement of nanoparticles on the substrate. A densely packed and multilayered nanoparticle structure was created by alternating as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 32 49  شماره 

صفحات  -

تاریخ انتشار 2016